extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C6).1C22 = C3×C23.9D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).1C2^2 | 192,148 |
(C23×C6).2C22 = C3×C24.C22 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).2C2^2 | 192,821 |
(C23×C6).3C22 = C3×C24.3C22 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).3C2^2 | 192,823 |
(C23×C6).4C22 = C3×C23⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).4C2^2 | 192,825 |
(C23×C6).5C22 = C3×C23⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).5C2^2 | 192,826 |
(C23×C6).6C22 = C3×C23.10D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).6C2^2 | 192,827 |
(C23×C6).7C22 = C3×C23.Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).7C2^2 | 192,829 |
(C23×C6).8C22 = C3×C23.11D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).8C2^2 | 192,830 |
(C23×C6).9C22 = C3×C23.4Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).9C2^2 | 192,832 |
(C23×C6).10C22 = C6×C23⋊C4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).10C2^2 | 192,842 |
(C23×C6).11C22 = C3×C22.11C24 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).11C2^2 | 192,1407 |
(C23×C6).12C22 = C6×C4⋊D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).12C2^2 | 192,1411 |
(C23×C6).13C22 = C6×C4.4D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).13C2^2 | 192,1415 |
(C23×C6).14C22 = C6×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).14C2^2 | 192,1417 |
(C23×C6).15C22 = C6×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).15C2^2 | 192,1419 |
(C23×C6).16C22 = C3×C22.29C24 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).16C2^2 | 192,1424 |
(C23×C6).17C22 = C3×C22.32C24 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).17C2^2 | 192,1427 |
(C23×C6).18C22 = C3×C23⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).18C2^2 | 192,1432 |
(C23×C6).19C22 = C3×D4⋊5D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).19C2^2 | 192,1435 |
(C23×C6).20C22 = C3×C22.45C24 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).20C2^2 | 192,1440 |
(C23×C6).21C22 = C3×C22.54C24 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).21C2^2 | 192,1449 |
(C23×C6).22C22 = C24.12D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).22C2^2 | 192,85 |
(C23×C6).23C22 = C24.13D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).23C2^2 | 192,86 |
(C23×C6).24C22 = Dic3×C22⋊C4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).24C2^2 | 192,500 |
(C23×C6).25C22 = C24.55D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).25C2^2 | 192,501 |
(C23×C6).26C22 = C24.56D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).26C2^2 | 192,502 |
(C23×C6).27C22 = C24.14D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).27C2^2 | 192,503 |
(C23×C6).28C22 = C24.15D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).28C2^2 | 192,504 |
(C23×C6).29C22 = C24.57D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).29C2^2 | 192,505 |
(C23×C6).30C22 = C23⋊2Dic6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).30C2^2 | 192,506 |
(C23×C6).31C22 = C24.17D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).31C2^2 | 192,507 |
(C23×C6).32C22 = C24.18D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).32C2^2 | 192,508 |
(C23×C6).33C22 = C24.58D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).33C2^2 | 192,509 |
(C23×C6).34C22 = C24.19D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).34C2^2 | 192,510 |
(C23×C6).35C22 = C24.20D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).35C2^2 | 192,511 |
(C23×C6).36C22 = C24.21D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).36C2^2 | 192,512 |
(C23×C6).37C22 = C2×C23.6D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).37C2^2 | 192,513 |
(C23×C6).38C22 = C24.59D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).38C2^2 | 192,514 |
(C23×C6).39C22 = C24.23D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).39C2^2 | 192,515 |
(C23×C6).40C22 = C24.24D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).40C2^2 | 192,516 |
(C23×C6).41C22 = C24.60D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).41C2^2 | 192,517 |
(C23×C6).42C22 = C24.25D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).42C2^2 | 192,518 |
(C23×C6).43C22 = C23⋊3D12 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).43C2^2 | 192,519 |
(C23×C6).44C22 = C24.27D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).44C2^2 | 192,520 |
(C23×C6).45C22 = C2×C23.7D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).45C2^2 | 192,778 |
(C23×C6).46C22 = C24.29D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).46C2^2 | 192,779 |
(C23×C6).47C22 = C24.30D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).47C2^2 | 192,780 |
(C23×C6).48C22 = C24.31D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).48C2^2 | 192,781 |
(C23×C6).49C22 = C24.32D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).49C2^2 | 192,782 |
(C23×C6).50C22 = C2×C23.16D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).50C2^2 | 192,1039 |
(C23×C6).51C22 = C2×Dic3.D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).51C2^2 | 192,1040 |
(C23×C6).52C22 = C2×C23.8D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).52C2^2 | 192,1041 |
(C23×C6).53C22 = C23⋊3Dic6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).53C2^2 | 192,1042 |
(C23×C6).54C22 = C2×S3×C22⋊C4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).54C2^2 | 192,1043 |
(C23×C6).55C22 = C2×Dic3⋊4D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).55C2^2 | 192,1044 |
(C23×C6).56C22 = C24.35D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).56C2^2 | 192,1045 |
(C23×C6).57C22 = C2×D6⋊D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).57C2^2 | 192,1046 |
(C23×C6).58C22 = C2×C23.9D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).58C2^2 | 192,1047 |
(C23×C6).59C22 = C2×Dic3⋊D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).59C2^2 | 192,1048 |
(C23×C6).60C22 = C24.38D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).60C2^2 | 192,1049 |
(C23×C6).61C22 = C2×C23.11D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).61C2^2 | 192,1050 |
(C23×C6).62C22 = C2×C23.21D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).62C2^2 | 192,1051 |
(C23×C6).63C22 = C23⋊4D12 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).63C2^2 | 192,1052 |
(C23×C6).64C22 = C24.41D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).64C2^2 | 192,1053 |
(C23×C6).65C22 = C24.42D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).65C2^2 | 192,1054 |
(C23×C6).66C22 = C24.67D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).66C2^2 | 192,1145 |
(C23×C6).67C22 = C24.43D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).67C2^2 | 192,1146 |
(C23×C6).68C22 = C24.44D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).68C2^2 | 192,1150 |
(C23×C6).69C22 = C24.45D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).69C2^2 | 192,1151 |
(C23×C6).70C22 = C24.46D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).70C2^2 | 192,1152 |
(C23×C6).71C22 = C24.47D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).71C2^2 | 192,1154 |
(C23×C6).72C22 = C2×D4×Dic3 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).72C2^2 | 192,1354 |
(C23×C6).73C22 = C2×C23.23D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).73C2^2 | 192,1355 |
(C23×C6).74C22 = C2×C23.12D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).74C2^2 | 192,1356 |
(C23×C6).75C22 = C24.49D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).75C2^2 | 192,1357 |
(C23×C6).76C22 = C2×D6⋊3D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).76C2^2 | 192,1359 |
(C23×C6).77C22 = C2×C23.14D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).77C2^2 | 192,1361 |
(C23×C6).78C22 = C2×C12⋊3D4 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).78C2^2 | 192,1362 |
(C23×C6).79C22 = C24.52D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).79C2^2 | 192,1364 |
(C23×C6).80C22 = C24.53D6 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).80C2^2 | 192,1365 |
(C23×C6).81C22 = C22×D4⋊2S3 | φ: C22/C1 → C22 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).81C2^2 | 192,1515 |
(C23×C6).82C22 = C12×C22⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).82C2^2 | 192,810 |
(C23×C6).83C22 = C3×C24⋊3C4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).83C2^2 | 192,812 |
(C23×C6).84C22 = C3×C23.7Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).84C2^2 | 192,813 |
(C23×C6).85C22 = C3×C23.34D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).85C2^2 | 192,814 |
(C23×C6).86C22 = C3×C23.8Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).86C2^2 | 192,818 |
(C23×C6).87C22 = C3×C23.23D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).87C2^2 | 192,819 |
(C23×C6).88C22 = C2×C6×C22⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).88C2^2 | 192,1401 |
(C23×C6).89C22 = C6×C42⋊C2 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).89C2^2 | 192,1403 |
(C23×C6).90C22 = D4×C2×C12 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).90C2^2 | 192,1404 |
(C23×C6).91C22 = C6×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).91C2^2 | 192,1412 |
(C23×C6).92C22 = C6×C22.D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).92C2^2 | 192,1413 |
(C23×C6).93C22 = C3×C22.19C24 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).93C2^2 | 192,1414 |
(C23×C6).94C22 = C2×C6×C4○D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).94C2^2 | 192,1533 |
(C23×C6).95C22 = C2×C6.C42 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 192 | | (C2^3xC6).95C2^2 | 192,767 |
(C23×C6).96C22 = C4×C6.D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).96C2^2 | 192,768 |
(C23×C6).97C22 = C24.73D6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).97C2^2 | 192,769 |
(C23×C6).98C22 = C24.74D6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).98C2^2 | 192,770 |
(C23×C6).99C22 = C24.75D6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).99C2^2 | 192,771 |
(C23×C6).100C22 = C24.76D6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).100C2^2 | 192,772 |
(C23×C6).101C22 = C25.4S3 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).101C2^2 | 192,806 |
(C23×C6).102C22 = Dic3×C22×C4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 192 | | (C2^3xC6).102C2^2 | 192,1341 |
(C23×C6).103C22 = C22×Dic3⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 192 | | (C2^3xC6).103C2^2 | 192,1342 |
(C23×C6).104C22 = C2×C12.48D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).104C2^2 | 192,1343 |
(C23×C6).105C22 = C22×C4⋊Dic3 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 192 | | (C2^3xC6).105C2^2 | 192,1344 |
(C23×C6).106C22 = C2×C23.26D6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).106C2^2 | 192,1345 |
(C23×C6).107C22 = C22×D6⋊C4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).107C2^2 | 192,1346 |
(C23×C6).108C22 = C2×C4×C3⋊D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).108C2^2 | 192,1347 |
(C23×C6).109C22 = C2×C23.28D6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).109C2^2 | 192,1348 |
(C23×C6).110C22 = C2×C12⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).110C2^2 | 192,1349 |
(C23×C6).111C22 = C24.83D6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).111C2^2 | 192,1350 |
(C23×C6).112C22 = C22×C6.D4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).112C2^2 | 192,1398 |
(C23×C6).113C22 = C23×Dic6 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 192 | | (C2^3xC6).113C2^2 | 192,1510 |
(C23×C6).114C22 = S3×C23×C4 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).114C2^2 | 192,1511 |
(C23×C6).115C22 = C23×D12 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).115C2^2 | 192,1512 |
(C23×C6).116C22 = C22×C4○D12 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 96 | | (C2^3xC6).116C2^2 | 192,1513 |
(C23×C6).117C22 = Dic3×C24 | φ: C22/C2 → C2 ⊆ Aut C23×C6 | 192 | | (C2^3xC6).117C2^2 | 192,1528 |
(C23×C6).118C22 = C6×C2.C42 | central extension (φ=1) | 192 | | (C2^3xC6).118C2^2 | 192,808 |
(C23×C6).119C22 = C2×C6×C4⋊C4 | central extension (φ=1) | 192 | | (C2^3xC6).119C2^2 | 192,1402 |
(C23×C6).120C22 = Q8×C22×C6 | central extension (φ=1) | 192 | | (C2^3xC6).120C2^2 | 192,1532 |